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Abstract
The more usual problems discussed in classical mechanics in elementary
textbooks are the non-dissipative ones in which there is a Hamiltonian
representing the energy as a constant of motion. The translation of this type
of problem to quantum mechanics is very well known. Conversely, there are
very simple classical mechanical problems that involve dissipation, but whose
translation to quantum mechanics on the basis of a corresponding Hamiltonian
is sometimes misinterpreted, since the underlying classical formalism involves
non-canonical transformations that lead to non-unitary transformations of the
quantum mechanical wavefunctions. In this paper we shall discuss the problem
of a beam of particles of given momentum incident from the left on a shutter
that is opened at time t = 0. The solution has the well known properties of
diffraction in time, but we will analyse it quantum mechanically both when
dissipation is and is not present. The objective is to get a better understanding
of the effect of dissipation in the quantum mechanical picture and to estimate the
influence of the above mentioned non-unitary transformations on this particular
problem.

PACS numbers: 0365G, 0375B

1. Introduction

When starting a course in classical mechanics one usually considers first problems in which
there is no dissipation, where the force is independent of time and the gradient of a potential.
The energy is then an integral of motion and using the Hamiltonian formalism we can derive
the equation of motion from which we can obtain the coordinates and momenta as functions
of time.

A trivial case is the one in which we just have one dimension where

E = 1
2p

2 + V (x) (1)
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with E being the energy and x, p, the coordinate and momentum and where in the following
we use units in which the mass m = 1. Later we also impose this requirement on the Planck
constant h̄ = 1.

From Hamilton’s equations, with E = H ,

dx

dt
= p

dp

dt
= −∂V

∂x
(2)

and taking into account the conservation of E in (1) we have∫ x

x0

dx√
2[E − V (x)]

= t (3)

and so the problem is solved by a quadrature.
While the type of problem mentioned above is interesting, in most physical situations we

also have dissipation of energy due to friction or other causes, and many of these problems are
frequently just as easy to solve. For example if the dissipation is just a linear function of the
momentum or, in our units, of the velocity, the equation of motion becomes

ẍ + γ ẋ +
∂V

∂x
= 0 (4)

where γ is some positive real constant and a dot indicates a derivative with respect to time.
Considering for the moment the case when there is no potential, i.e. V (x) = 0 the solution

of (4) is

p = p0e−γ t x = p0

γ
(1 − e−γ t ) + x0 (5)

where x0, p0 are the initial values of (x, p). Note that when t → ∞ then x → (p0/γ ) + x0

which is a constant, and so it does not become ∞ as would happen in the case of no dissipation.
This result will be relevant in the later discussion.

While many problems with dissipation are almost as easy to solve in classical mechanics as
those that do not have this characteristic, the situation is quite different in quantum mechanics.
For non-dissipative problems we have a Hamiltonian, and for the one-dimensional case such
as that of (1), it is identical to the energy and by replacing p by −i∂/∂x it transforms into the
time-dependent Schrödinger equation

−1

2

∂2�(x, t)

∂x2
+ V (x)�(x, t) = i

∂�(x, t)

∂t
(6)

where, as the left-hand side is independent of time, we can assume�(x, t) = ψ(x) exp(−iEt)
and equation (6) for ψ(x) becomes the stationary Schrödinger equation where the right-hand
side is replaced by Eψ(x).

For dissipative problems, even for those as simple as that of equation (4), the situation
is much more complex. We could reduce them to non-dissipative problems if we added an
external system with which they could interact, but this implies including many, in some cases
an infinite, number of extra degrees of freedom. There is a way of introducing a Hamiltonian
for problems of type (4) but it presents some paradoxes that have been discussed by many
people [1] including one of the authors (DS) [2]. We shall discuss these paradoxes in section 4.

Our main interest, though, is to find some simple time-dependent quantum mechanical
problems which can have either dissipative or non-dissipative characteristics, so as to compare
their behaviour as function of time. The example we shall choose is that of diffraction in time,
a problem one of us (MM) discussed in [3] and, from another standpoint, more recently [4].
It consists of the time evolution of a beam of particles of definite momentum restricted to the
range −∞ � x � 0 by a shutter at x = 0. At time t = 0 the shutter is removed and the
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behaviour of the wavefunction �(x, t) is analysed in the interval 0 � x � ∞. This problem,
which has no dissipation, will be reviewed in sections 2 and 3. We shall analyse a similar
problem in which dissipation is present. In section 4 we compare the results for the two cases
and also indicate how to solve some of the paradoxes present in the dissipative case.

2. Diffraction in time

The problem with diffraction in time, mentioned in the previous section, corresponds to finding
a wavefunction �(x, t) satisfying, in our units, the time-dependent Schrödinger equation

i
∂�(x, t)

∂t
= −1

2

∂2�(x, t)

∂x2
(7)

with the initial value

�(x, 0) = exp(ikx)θ(−x) (8)

where k will now denote the value of the momentum of the particles behind the shutter and
θ(x) is the step function:

θ(x) =
{

1 if x > 0

0 if x < 0.
(9)

The determination of the time-dependent wavefunction, which from now on we shall
denote by M(x, k, t), can be done in many ways either by making it fulfil an ordinary
differential equation as in [3] or using the Green function of the one-dimensional time-
dependent Schrödinger equation [5]. We then arrive at the result

M(x, k, t) = 1
2 exp[i(kx − 1

2k
2t)]erfc (e−i π4 ω)

= e−i π4 exp

[
i

(
kx − 1

2
k2t

)]
1√
2

{[
1

2
+ C(ω)

]
+ i

[
1

2
+ S(ω)

]}
(10)

where

ω = kt − x√
2t

(11)

and the error integral is

erfc(z) = 2√
π

∫ ∞

z

e−y2
dy (12)

while the Fresnel integrals are defined by

C(ω) =
√

2

π

∫ ω

0
cos y2 dy (13)

S(ω) =
√

2

π

∫ ω

0
sin y2 dy. (14)

The expression |M(x, k, t)|2 gives the probability density of finding the particle at point
x, at time t , when initially it was on the left-hand side of the shutter, i.e. with x � 0, and had
a momentum k. From equation (10) we see that

|M(x, k, t)|2 = 1
2

{[
1
2 + C(ω)

]2
+

[
1
2 + S(ω)

]2
}

(15)

which is identical to the expression of the intensity of light in Fresnel diffraction by a straight
edge.
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Figure 1. Cornu spiral. The value of ω is marked along the curve while the values of the Fresnel
integrals C(ω) and S(ω) are given, respectively, by the abscissa and ordinate. One-half of the
square of the magnitude of the vector from the point (−1/2,−1/2) to a point on the curve with
given ω gives the probability density for that value of ω.

However the variable ω of (11) has a very different meaning from the optical problem as
it is now a function of time. That is the reason that, in the original paper, it was given the name
of ‘diffraction in time’.

If we want to have snapshots of the probability density |M(x, k, t)|2 at given instances
of time we can make use of the Cornu spiral diagram [6] of figure 1. The values C(ω) and
S(ω) are given along the abscissa and ordinate while ω is marked along the curve itself. The
value of |M(x, k, t)|2 is one-half of the square of the distance between the point

(− 1
2 ,− 1

2

)
in

the plane of figure 1 to the given point on the curve corresponding to the value ω. For t fixed
and x going from −∞ to +∞ we see from (11) that ω goes from −∞ to +∞ passing through
ω = 0 when x = x0 ≡ kt . With the help of the Cornu spiral we then obtain that |M(x, k, t)|2
has the form of the solid curve of figure 2. The classical distribution of particles at time t is
indicated by the dashed plot in figure 2 terminating abruptly at x0 = kt .

Having thus reviewed the non-dissipative case of removing a shutter from a beam of
particles of momentum k which was restricted originally to −∞ � x � 0, we shall now
discuss a similar problem in which dissipation is present.

3. Diffraction in time with dissipation

A classical problem involving dissipation is frequently formulated through a Newton equation
in which an appropriate extra force is included as indicated, for example, in the term γ ẋ in (4).
This equation, in contrast with equation (1) for the Hamiltonian of a non-dissipative problem,
gives no hint on how it can be translated to a quantum mechanical form.

We must then look into more phenomenologically motivated ways to obtain equation (4).
In particular, we consider those that include some type of effective Hamiltonians, albeit ones
that besides x, p might depend also explicitly on the time t , and thus do not correspond to
a conserved energy as they are not invariant under time translation. The historically first,
and most frequently used, time-dependent Hamiltonian H̄ was proposed by Caldirola [7] and
Kanai [8] in the form

H̄ = 1
2 e−γ t p̄2 + eγ tV (x̄). (16)
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Figure 2. Probability density for observing a particle at a given time as a function of distance from
the shutter. The dashed plot extending to x = x0 represents the classical result at a time t after
opening the shutter. In the units we use x0 = vt = kt , where v is the initial velocity of the particle.

In this section we shall systematically use x̄, p̄ with a bar above and show later that they are
related to x, p by a non-canonical transformation.

Using Hamilton’s equations we get from H̄ that

˙̄x = ∂H̄

∂p̄
= e−γ t p̄ (17)

˙̄p = −∂H̄
∂x̄

= −eγ t
∂V (x̄)

∂x̄
(18)

and thus from (17) we have

p̄ = eγ t ˙̄x ˙̄p = γ eγ t ˙̄x + eγ t ¨̄x. (19)

Subtracting (18) from the ˙̄p in (19) and cancelling the common factor eγ t we then get the
equation of motion

¨̄x + γ ˙̄x +
∂V

∂x̄
= 0 (20)

which is exactly the same as the one in (4) but in terms of the barred coordinates.
Note that in our units (h̄ = m = 1) we have in the non-dissipative case p = ẋ while

in (19) p̄ = eγ t ˙̄x. This implies, if we assume x̄ = x, that p̄ = eγ t which will be relevant for
later analysis.

For the quantum mechanical form of the dissipative problem we can proceed as in going
from (1) to (6) but now replacing, in (16), p̄ by −i∂/∂x̄, x̄ by x̄ and H̄ by i∂/∂t to get

i
∂�̄

∂t
= e−γ t

(
−1

2

∂2�̄

∂x̄2

)
+ eγ tV (x̄)�̄. (21)

Again we put a bar on the wavefunction �̄(x̄, t) as it is related to the physical �(x, t) by
a non-unitary connection which was derived in [2] and will be reviewed in the next section.

We now restrict ourselves to the case when V (x̄) = 0 and consider again the shutter
problem of the previous section in the presence of dissipation. This implies finding the �̄(x̄, t)
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solution of

i
∂�̄

∂t
= e−γ t

(
−1

2

∂2�̄

∂x̄2

)
(22)

�̄(x̄, t = 0) = exp(ik̄x̄)θ(−x̄). (23)

If we multiply equation (22) by eγ t we can replace in the left-hand side the time variable
t by

τ = 1

γ

(
1 − e−γ t) (24)

and as it has the property that for t = 0, τ = 0, our problem reduces to finding the solution of

i
∂�̄

∂τ
= −1

2

∂2�̄

∂x̄2
�̄(x̄, τ = 0) = exp(ik̄x̄)θ(−x̄) (25)

which is exactly the same problem as discussed in the previous section but in which we have
to substitute t by τ , x by x̄ and k by the constant k̄.

Thus the solution of (25) is

�̄(x̄, t) = M(x̄, k̄, τ ) (26)

with ω of (11) replaced by

ω̄ = k̄τ − x̄√
2τ

. (27)

We could discuss the dependence of M(x̄, k̄, τ ) or |M(x̄, k̄, τ )|2 as we did in the last
section for the non-dissipative problem, but we will defer this analysis until after establishing
the relations between x̄ and �̄ with x and �.

4. The non-unitary connections between Ψ and Ψ̄

We derived the classical equation (20) for our dissipative problem from the H̄ of (16) using the
Hamiltonian equations. We could also have proceeded to do this through the Hamilton–Jacobi
equation

∂S̄

∂t
+ H̄

(
x̄,
∂S̄

∂x̄
, t

)
= 0 (28)

where S̄ is the action of our dissipative problem.
For the non-dissipative case the equation will be

∂S

∂t
+H

(
x,
∂S

∂x

)
= 0 (29)

and the momenta for both cases are given by

p̄ = ∂S̄

∂x̄
p = ∂S

∂x
. (30)

As we showed in the paragraph following equation (20) we have x̄ = x, p̄ = peγ t and
we get the Poisson bracket relation in the space of canonical variables

{x̄, p̄}x̄,p̄ = ∂x̄

∂x̄

∂p̄

∂p̄
− ∂x̄

∂p̄

∂p̄

∂x̄
= 1 (31)

while for the physical variables x, p we obtain in this canonical space

{x, p}x̄,p̄ = ∂x

∂x̄

∂p

∂p̄
− ∂x

∂p̄

∂p

∂x̄
= e−γ t (32)
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which indicates that x̄, p̄ and x, p are connected by a non-canonical relation, as the right-
hand side of (32) is not one. Furthermore, as exp(−γ t) < 1, except when t = 0, we see
that Heisenberg’s uncertainty relation is violated in the quantum version where the Poisson
brackets are replaced by a commutator.

Since measurements are given in physical space, while our calculations in section 3 gave
us the wavefunction �̄(x̄, τ ) in the canonical space, we have to transform this function to
obtain the corresponding one for the physical variables.

For this purpose we use the relation between the action function S̄ in the canonical space
and S in the physical space that can be obtained from (30) as

S̄ = Seγ t . (33)

Following Schrödinger’s original analysis [9] we can write the action S in terms of the
wavefunction � i.e.

S = −i ln�. (34)

Applying the same definition for equation (33) we get

S̄ = −i ln �̄ = eγ tS (35)

which immediately leads to the desired relation between � and �̄

ln �̄ = eγ t ln� (36)

or

� = �̄e−γ t
. (37)

This allows us now to express the results of section 3 in the space of the physical variables,
where Heisenberg’s relation between these variables is not violated. In particular �̄(x̄, τ ) can
now be transformed by the non-unitary connection into �(x, t).

Thus, as we have already determined �̄ in the previous section for the dissipative shutter
problem, we can obtain the wavefunction �(x, t) relevant to the physical quantities x and p
that corresponds to �̄(x̄, t) for the canonical variables x̄ = x and p̄ through relation (37). The
next section illustrates the implications of this relation for the diffraction in time problem with
dissipation.

5. Conclusion

From equations (24), (26) and (37) we conclude that the probability density for finding a
particle at a point x > 0 at time t > 0 for the shutter problem with dissipation is

|�(x, t)|2 = |M[x, k, γ−1(1 − e−γ t )]|2e−γ t
(38)

where now, for the purpose of comparison, we take the constant momentum k̄ as equal to the
one without dissipation, i.e. k̄ = k. For the original shutter problem this probability density is
given by (15). We now discuss the two results.

We first note from figure 1 of the Cornu spiral that |M(x, k, t)|2 in figure 2 oscillates
around one until x reaches a value close to x = x0 ≡ kt , where it starts dropping to zero as
indicated by the solid curve in figure 2.

We then remark that

1 − e−γ t < γ t for t > 0 (39)

and thus the time-dependent term in the right-hand side of (38) also oscillates around one until
x reaches a value close to

x = x ′
0 ≡ kτ = k

γ

(
1 − e−γ t) (40)
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Figure 3. Probability density of observing a particle at a given time as a function of the distance
from the shutter. The solid curve corresponds to the case without dissipation while the curve with
points is the one with dissipation. The classical results are given by dashed plots that indicate the
points x0 = vt = kt and x′

0 = vτ = kτ , without and with dissipation.

where it starts dropping to zero. From (39) we see that x ′
0 < x0 and thus, in the dissipative

shutter problem, the particle remains closer to the origin than in the non-dissipative case. The
exponent e−γ t in (38) is always smaller than one, and thus, when the probability density is
close to one in the dissipative case, it diminishes (increases) the non-dissipative value when
it is larger (smaller) than one. Thus the oscillations around one are damped when there is
dissipation. We also see from the Cornu spiral of figure 1 that, in the dissipative case, at the
points around x = x ′

0 ≡ kτ , the probability density descends from values close to one to those
close to zero. In figure 3 we indicate the behaviour of |�(x, t)|2 as a function of x at a given
time t , both when there is no dissipation (the solid curve) and when there is (the curve with
points). These results agree with the classical expressions without dissipation, as after opening
the shutter at time zero, the particle at time t reaches the value x0 = kt , while with dissipation
it only comes to the point x ′

0 = kτ = (k/γ )(1 − eγ t ).
Both of these facts are indicated by the dashed plots in figure 3. As the maximum value of

x ′
0 is (k/γ ), as indicated in the discussion following equation (5), we also have that quantum

mechanically, in the dissipative case, the particle has close to zero probability of being found
at a distance from the origin x = 0 larger than (k/γ ), independent of the time value.
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